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Abstract
The relaxation dynamics of collections of interacting, thermally activated, two-
level subsystems are shown to be characterized by nonequilibrium ageing and
memory effects which are analogous to those observed in magnetic systems
where randomness and frustration yield a collectively frozen magnetic state with
spin-glass-like correlations. Numerical simulations of these nonequilibrium
relaxation effects are presented and compared with measurements performed on
assemblies of nanodimensional magnetic particles, and their physical origins,
as well as their relationship to genuinely collective nonequilibrium relaxation
phenomena, are discussed within a theoretical framework based on the Preisach
model of hysteresis.

1. Introduction

Assemblies of nanodimensional magnetic particles with a sufficiently high particle density
exhibit anomalous relaxation dynamics [1, 2], which mimic those observed in canonical spin
glasses like AgMn [3]. Principal among these are ageing, with and without temperature cycling,
and memory. Ageing refers to the observation that the magnetic response of a nanoparticulate
assembly depends on the time ta for which the system is held at constant temperature following
cooling from the high temperature superparamagnetic phase, and is visible directly as a
relaxation of the moment (or the frequency dependent susceptibility) in the cooling field [2], or
as an age dependence of the relaxation isotherms following field application or removal [1]. If
ageing at temperature T is temporarily interrupted by negative temperature cycling to T −�T ,
the ageing process is effectively suspended for the duration of the cycling, while positive
temperature cycling to T + �T erases the ageing and restores the system to a ‘younger’
configuration [2, 4]. Memory refers to the observation that if field cooling is temporarily halted
and the system is aged at constant temperature T for a time ta before cooling is resumed then
the magnetic response exhibits an upward ‘step’ at the ageing temperature T when the system
is subsequently warmed from low temperatures [2]. Anomalous relaxation effects like these
are interpreted as evidence that dipole–dipole interactions between the magnetic nanoparticles
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Figure 1. Memory steps in the measured field cooled moment of nanoparticles of Fe in Al2O3
as described in the text. Solid circles are cooling data; open circles are warming data. The inset
shows the temperature dependence of the measured FC and ZFC moments in Ha = 40 Oe.

induce a collective ‘super-spin-glass’ state, with a multivalley free energy landscape in which
the energy barriers describe collective metastable state excitations, rather than single-particle
excitations. (The concept of a dipolar spin glass is not new, and efforts to disentangle relaxation
effects which are superparamagnetic in origin from those which are uniquely characteristic of
collective dipolar freezing can be traced back to the classic studies of Eiselt et al [5, 6] and
Tholence et al [7] on dilute Eux Sr1−x S, where magnetically rigid, internally exchange-coupled
clusters of Eu ions exhibit two distinct dynamic anomalies, a ‘high temperature’ anomaly,
which is attributed to the thermal blocking of individual clusters, and a ‘low temperature’
anomaly, which has been linked to intercluster coupling.)

Recently, another class of memory experiments has appeared in the literature [8],
which claims to support not only the existence of a collective state but, more specifically,
a hierarchical organization of metastable states [9], which bifurcates continuously with
decreasing temperature, in preference to domain-growth pictures based on the two-state droplet
model of Fisher and Huse [10]. The latter experiments, which are illustrated in figures 1 and 2
for a thin film of nanodimensional Fe particles embedded in alumina, are distinguished by field
removal and reapplication. The closed circles in figure 1 show the moment of the Fe/Al2O3

system measured while cooling from 300 to 10 K at 2 K min−1 in a field Ha = 40 Oe, with
temporary pauses at T = 38 and 25 K, during which the field is removed, and the system
is aged in zero field for ta = 15 000 s, followed by field reapplication. When the system is
subsequently warmed from 10 K in the field Ha = 40 Oe at the same rate of 2 K min−1, the
measured moment exhibits a series of upward ‘memory steps’ which are coincident with the
ageing temperatures, as shown by the open circles in figure 1. A similar memory effect is
observed in the time dependence of the moment, when relaxation at T = 35 K, following
zero-field cooling and the application of a field Ha = 40 Oe, is interrupted after a period of
5000 s by negative temperature cycling to T = 25 K with field removal, for a further period
of 5000 s, and then back to T = 35 K with field reapplication. As figure 2 shows, aside
from a brief recovery phase, the time dependence of the moment after reheating is a smooth
continuation of the initial time dependence. (This effect is asymmetric, in the sense that
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Figure 2. Memory in the measured relaxation of the zero-field cooled moment of Fe/Al2O3 at
T = 35 K in Ha = 40 Oe, interrupted by negative temperature cycling to T = 25 K with field
removal. The inset shows the moment plotted on a logarithmic timescale, with the temperature
cycling and recovery phase removed.

positive temperature cycling from T to T + �T and back to T does not restore a continuation
of the initial relaxation.) In spite of the suggestive structural similarities between the relaxation
responses in figures 1 and 2, and those observed in strongly coupled systems with spin-glass-
like correlations, the relaxation phenomena presented here are, as we will show, a characteristic
of nonequilibrium dynamics in any magnetic system for which the temperature dependence
of the magnetic response is dominated by thermal-fluctuation-driven moment reversals over a
fixed distribution of free energy barriers, and are thus not necessarily collective in origin.
While similar conclusions have been reached by other investigators [11, 12], working in
the hypothetical limit of no interactions, the physical origin of these effects is not properly
understood, nor is their dependence on interparticle interactions or their sensitivity to the
details of the experimental protocol. In the current investigation, we study the relaxation
response of a model system composed of a collection of thermally activated, interacting, two-
level subsystems, subject to the temperature and field cycling protocols described above. We
show that such systems exhibit nonequilibrium ageing and memory phenomena, which are
highly reminiscent of those observed in systems where randomness and frustration yield a
collectively frozen magnetic state with spin glass correlations, but which differ in certain
fundamental respects from relaxation dynamics which are genuinely collective in origin.

2. Model simulations

The representation of magnetic materials as collections of elementary bistable subsystems
was first introduced into the literature by Preisach [13], and has since evolved into
a general mathematical and physical framework for the description of hysteresis and
irreversibility in a wide variety of magnetic materials, including ferromagnets, spin glasses,
and superparamagnets [14–17]. The subsystems represent the Barkhausen instabilities which
are fundamental to all magnetizing processes, and each Barkhausen subsystem is characterized
by a momentµ, two magnetic states ±µ, and by a double-well free energy profile in a two-state
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Figure 3. The free energy profile of a two level subsystem
with two magnetic configurations ±µ, and two excitation
barriers W+ and W−, or equivalently, a dissipation barrier
Wd and a level splitting Ws.

configuration space, shown in figure 3, with two excitation barriers for moment reversal W+

and W−, or equivalently a dissipation barrier Wd = (W+ + W−)/2, which describes the energy
lost irreversibly as heat in a Barkhausen transition, and a level splitting 2Ws = W− − W+,
which describes the energy stored reversibly in a transition. Thermally activated overbarrier
transitions are driven by a thermal viscosity field HT = Hf ln(texp/τ0), where Hf = kT/µ is
the thermal fluctuation field and texp is the experimental time constant, and a specific magnetic
material is described by a distribution p(Hd, Hs) of subsystem characteristic fields Hd = Wd/µ

and Hs = Ws/µ. The field Hs is typically interpreted as an interaction field, although this is
by no means a necessary consequence of the formalism.

The state of the entire ensemble of subsystems in a field Ha at a temperature T , following a
specific history of field and temperature excursions, has an elegant geometrical representation
in the Preisach plane, defined by orthogonal coordinate axes Hd and Hs. A given experimental
protocol is represented by a state boundary which partitions the plane into +µ and −µ

subregions. The Preisach diagrams for standard protocols like field cooling (FC) followed
by field removal, and zero-field cooling (ZFC) followed by field application and removal, have
been discussed in detail in the literature [17], and are reproduced here with limited justification.

2.1. Memory in the FC moment with field removal

We begin by discussing the Preisach representation of the FC memory effect illustrated
in figure 1. At sufficiently high temperatures such that the thermal fluctuation energy
WT = kT ln(texp/τ0) exceeds both excitation barriers W+ and W− of a given subsystem, the
subsystem is in thermal equilibrium and responds superparamagnetically to an applied field,
with an induced moment given by

meq = µ tanh

[
µ(Ha − Hs)

kT

]
. (1)

When the temperature is lowered, the subsystem will fall out of equilibrium at the blocking
temperature TB where the thermal energy WT matches the lower excitation barrier [17, 18]
Wd = µ(Hd − |Hs − Ha|), which yields

TB = µ(Hd − |Hs − Ha|)
k ln(tc/τ0)

(2)

where tc is the appropriate experimental field cooling time constant. For all temperatures
T < TB, the subsystem level populations are frozen at exp[±(Ha−Hs)/kTB] and the subsystem
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Figure 4. Preisach representation of the experimental protocol which results in memory steps in
the field cooled moment. (a) Preisach representation of the field cooled state. (b) Preisach diagram
for field removal at temperature TA followed by ageing for a time ta . (c) Preisach diagram for
field reapplication at temperature TA followed by cooling to TB. (d) A repetition of the same field
removal, ageing, and field application sequence at temperature TB, followed by warming from low
temperatures (dashed boundary).

moment is frozen at

mblocked = µ tanh

[
µ(Ha − Hs)

kTB

]
= µ tanh

[
(Ha − Hs) ln(tc/τ0)

Hd − |Hs − Ha|
]

. (3)

For typical experimental cooling times tc ∼ 100 s, ln(tc/τ0) ∼ 20–25, the hyperbolic tangent
in equation (3) is negligibly different from unity for all but those subsystems which lie within
a narrow strip |Ha − Hs| � Hd/15 in the Preisach plane. For the current purposes, all such
departures from unity can be ignored, and it is sufficient to set mblocked = ±µ. Figure 4(a)
shows the Preisach representation of the field cooled (FC) state. The bold black line separating
the shaded (positive moment) and unshaded (negative moment) areas is the state boundary.
The subsystems in the regions labelled SP are superparamagnetic, with moments given by
equation (1). This superparamagnetic component contributes a temperature dependence which
has no direct relevance to the specific memory effect discussed here and, consequently, for
computational and conceptual simplicity, we replace meq by the saturation moment ±µ. The
total system moment is a sum of all the individual subsystem moments m(Hd, Hs), each
weighted by the Preisach density p(Hd, Hs):

M(Ha, T ) =
∫ +∞

−∞
dHs

∫ ∞

0
dHd m(Hd, Hs)p(Hd, Hs). (4)

It follows from an inspection of figure 4(a) that the model FC moment is a constant,
independent of temperature. Figure 4(b) shows the Preisach diagram for field removal at
a temperature TA, with experimental time constant toff , followed by ageing for a time ta,
where the thermal fluctuation field is HfA = kTA/µ, and the thermal viscosity field is
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HTA = HfA ln[(toff + ta)/τ0] ∼= HfA ln(ta/τ0), since experimentally, ta � toff . The dashed
boundary shows the initial location of the state boundary after field removal is complete
and before ageing has begun (ta = 0). Figure 4(c) shows the Preisach diagram for field
reapplication at the same temperature TA, followed by cooling. The thermal viscosity field
HTA, and hence the shape and location of this particular segment of the state boundary, are
determined entirely by a single time constant, the experimental time ton for field turn-on and
stabilization, so that HTA = HfA ln(ton/τ0). Figure 4(d) shows the final configuration of the
state boundary (bold line) following field cooling from TA to TB, where the thermal fluctuation
field is HfB = kTB/µ < HfA, and a repetition of the same field removal/reapplication sequence,
where HTB = HfB ln[(toff + ta)/τ0] and HTB1 = HfB ln(ton/τ0). Thus field cooling interrupted
by ageing in zero field is distinguished from simple field cooling (figure 4(a)) by a Preisach
state boundary with ‘notches’, whose relative locations and depths are determined by the
ratio of the ageing temperatures TA/TB, by the applied field Ha, and also by the details of
the experimental protocol through the experimental time constants ton and toff . Figure 4(d)
also shows the Preisach representation of the final step in the experimental protocol, in
which the system is warmed from low temperatures, with a warming time constant tw � ta,
comparable to the cooling time constant tc. The dashed boundary, which intersects the Hd-axis
at Ha + HT = Ha + (kT/µ) ln[(ton + tw)/τ0], sweeps through the Preisach plane with increasing
temperature T , inverting the moments of the subsystems in the ‘notches’ from −µ to +µ and
thus restoring the FC state just prior to field removal and ageing. The restoration begins at the
ageing temperature, and proceeds gradually until the system reaches a temperature at which
the entire ‘notch’ is inverted. In particular, a comparison of figures 4(c) and (d) shows that
the inversion of the lower temperature TB-notch, and the restoration of the FC state at TB,
will be complete when Hf ln[(ton + tw)/τ0] ≈ HfA ln(ton/τ0), that is, when T ≈ TA. It is
also clear from an inspection of these Preisach constructions that this particular memory effect
is sensitive to the details of the experimental protocol and, furthermore, that some memory
steps (like the TB-step) demand the existence of subsystems with nonvanishing bias fields Hs,
and thus are observable only in magnetic systems with interacting components, while other
memory steps (like the TA-step), for which the Preisach state boundary includes a segment of
the Hd-axis, are observable in noninteracting systems as well. However, in neither case is the
existence of a collectively ordered state a prerequisite for observing memory steps in the FC
moment. Figure 5 shows a numerical simulation of the memory effect based on the Preisach
diagrams in figure 4, assuming a lognormal–Lorentzian Preisach density

p(Hd, Hs) = (2πσ 2
d H 2

d )−1/2 exp[−(ln(Hd/H̄d))
2/2σ 2

d ] · (σs/π)[H 2
s + σ 2

s ]−1 (5)

with H̄d = 300 Oe (typical of real nanoparticulate assemblies), σd = 0.5, and σs = 60 Oe,
and with parameters Ha = 40 Oe, TA = 35 K, TB = 20 K, k/µ = 0.3 Oe/K (corresponding
to a subsystem moment µ ∼ 5 × 104µB), ta = 15 000 s, and tw = tc = 100 s. The inset
in the figure shows a numerical simulation of the temperature dependence of the model FC
and ZFC moments in a field Ha = 40 Oe, which includes the superparamagnetic temperature
dependence neglected in the memory simulation, and provides a context for the memory step
sequence in the main body of the figure. The simulation clearly reproduces the essential
features of the measurement in figure 1.

2.2. Memory in relaxation isotherms with temperature cycling

By following a similar procedure, it is possible to construct the Preisach representation of
the experimental protocol which leads to the relaxation memory effect illustrated in figure 2.
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Figure 6. Preisach representation of the experimental protocol for relaxation interrupted by
temperature cycling, as described in the text. The bold line shows the location of the Preisach
boundary at the instant the field has been reapplied following temperature cycling from TA to TB
and back to TA. The dashed boundary describes the subsequent relaxation of the moment as a
function of observation time t .

The entire experimental sequence is summarized in figure 6. The thermal viscosity field
HTA = HfA ln[(ton + ta)/τ0] shows the location of the Preisach state boundary after zero field
cooling to TA where HfA = kTA/µ, followed by the application of a field with time constant
ton, and ageing for ta. The field HTB = HfB ln[(toff + ta)/τ0] shows the location of the Preisach
boundary after field cooling from TA to TB, where HfB = kTB/µ, followed by field removal
with time constant toff , and ageing for ta. Since HfB < HfA, little relaxation is expected to
occur at TB, apart from the initial decrease related to the field removal. When the system is
warmed back to TA and the field Ha is reapplied, the system does not immediately return to the
state which it occupied at the end of the first ageing process, since the relevant viscosity field at
the instant that field reapplication is complete is HTA1 = HfA ln(ton/τ0) < HfA ln[(ton + ta)/τ0].
Thus the system moment, at the instant when relaxation recommences, defined by the bold
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Figure 7. Model simulations of the relaxation of the zero-field cooled moment at TA = 35 K in a
field Ha = 60 Oe, interrupted by temperature cycling to TB = 28 K in zero field.

Preisach boundary in figure 6, lies somewhat below the value reached at the termination of
the first ageing process, and only recovers this value after a further time ta has elapsed, and
the dashed boundary defined by Ha + HTA2 = Ha + HfA ln[(ton + ta)/τ0] is coincident with
the initial ageing boundary at Ha + HTA. Beyond this point, the relaxation becomes a smooth
continuation of the relaxation in the first ageing interval, and all memory of the intermediate
ageing process is wiped out. Thus memory in the current sense, after temperature cycling and
field removal, is once again seen to be a simple consequence of thermally activated dynamics
over a distribution of independent energy barriers, rather than a cooperative phenomenon.
Figure 7 shows a numerical Preisach simulation of this memory effect assuming the lognormal–
Lorentzian Preisach distribution in equation (5) with distribution parameters H̄d = 300 Oe,
σd = 0.5, and σs = 60 Oe, and with Ha = 60 Oe, k/µ = 0.3 Oe/K, TA = 35 K, TB = 28 K,
tc = tw = 100 s, and ta = 5000 s. The inset shows that the relaxation after the initial
conditions have been restored, and following a recovery phase, is a smooth continuation of
the initial relaxation isotherm. According to the model, the recovery phase is an essential
consequence of the warming and field reapplication protocol, cannot be superposed on the
initial relaxation by a simple time shift, and must be completed before the true continuation
of the initial relaxation can be observed. It is also clearly a characteristic of the measured
memory data in figure 2.

2.3. Ageing in the field cooled moment of blocked superparamagnets

One of the signatures of canonical spin glasses like CuMn is the dependence of the magnetic
state on the age of the system, that is, on the time ta for which the system is held at constant
temperature T in a constant field Ha following cooling from above the glass temperature [19].
In particular, the field cooled (FC) moment is observed to relax monotonically upward at ‘high’
temperatures, monotonically downward at ‘low’ temperatures [19], and nonmonotonically
downward and then upward at intermediate temperatures. Similar ageing phenomena have
also been observed in higher density systems of nanoparticles [2], and have been interpreted
as evidence of cooperative freezing of the dipole–dipole coupled nanoparticle moments into
an orientationally random, frustrated spin-glass-like configuration.
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However, ageing is also a characteristic of simple superparamagnetic blocking, where
the relaxation dynamics are governed by individual thermally activated moment reversals
over a spectrum of independent energy barriers. As before, the physical reasons for this are
particularly easy to appreciate within the Preisach framework. For a given two-level subsystem,
blocking occurs during cooling, at a temperature TB such that HTB = (kTB/µ) ln(tc/τ0) =
(Hd − |Hs − Ha|), where tc is a time constant defined by the experimental cooling rate. If
the subsystem is subsequently cooled to a lower temperature T < TB and then aged at this
lower temperature for a time ta, the thermal viscosity field HT will grow with ageing time ta
as HT = (kT/µ) ln[(tc + ta)/τ0], and the subsystem will unblock when HT = HTB, that is, at
a time ta such that

(kT/µ) ln[(tc + ta)/τ0] = (kTB/µ) ln(tc/τ0). (6)

At this time, the subsystem moment will jump discontinuously from its blocked value in
equation (3) to its unblocked superparamagnetic value mSP in equation (1), where |mSP| >

|mblocked|, so that

�m = µ tanh

[
µ(Ha − Hs)

kT

]
− µ tanh

[
µ(Ha − Hs)

kTB

]
. (7)

For subsystems with Hs < Ha, mblocked and mSP are positive, as is �m, while, for subsystems
with Hs > Ha, mblocked, mSP, and �m are all negative. The total moment of the entire
ensemble will thus vary continuously with the age ta of the ensemble, with the precise behaviour
depending upon the relative weighting of the two types of subsystems. Figure 8, if we ignore
the bold boundaries, shows the Preisach representation of this ageing process. Subsystems
in the regions labelled ‘SP + aged’ and ‘SP − aged’ are unblocked and have reached thermal
equilibrium during the ageing time ta, while subsystems in the shaded regions are blocked in
their field cooled configurations. Numerical simulations of the age dependence of the moment
have been performed for a system with a lognormal distribution of dissipation fields, and for
various bias field distributions g(Hs):

p(Hd, Hs) = (2πσ 2
d H 2

d )−1/2 exp[−(ln(Hd/H̄d))
2/2σ 2

d ] · g(Hs) (8)

with H̄d = 300 Oe, and σd = 0.5, and with Ha = 1 Oe, T = 60 K and k/µ = 0.3 Oe/K,
and these simulations are summarized in figure 9(a). If g(Hs) is a single symmetric Gaussian
distribution:

g(Hs) = (2πσ 2
s )−1/2 exp[−H 2

s /2σ 2
s ] (9)
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Figure 9. (a) Numerical Preisach simulations of the ageing of the field cooled moment with time
t at constant temperature T in a constant field Ha for (1) a single symmetric Gaussian distribution
of bias fields Hs and (2) a bimodal Gaussian distribution of bias fields Hs. (b) Numerical Preisach
simulations of the relaxation rate S ≡ −∂M/∂ ln t as a function of ln t for TRM relaxation
isotherms obtained by ageing at a constant temperature (corresponding to a thermal fluctuation
field Hf = 20 Oe) in a constant field Ha = 1 Oe for ageing times ta = 10, 100, 1000, and 5000 s,
followed by field removal.

with σs = 60 Oe, the difference between the aged moment and the field cooled moment:

�M =
∫

dHd

∫
dHs �mp(Hd, Hs) (10)

with �m given by equation (7), relaxes upward with time ta, while if g(Hs) is a bimodal
Gaussian, with two peaks symmetrically located about Hs = 0:

g(Hs) = 1
2 (2πσ 2

s )−1/2{exp[−(Hs − H̄s)
2/2σ 2

s ] + exp[−(Hs + H̄s)
2/2σ 2

s ]} (11)

and with H̄s = 60 Oe and σs = 60 Oe, then the system moment relaxes downward from its
field cooled value. A crossover from upward to downward relaxation has been observed in
spin glasses with cooling [19], while, to our knowledge, only downward relaxation has been
observed in nanoparticulate assemblies [2]. However, recent micromagnetic simulations [20]
of strongly coupled, high density systems of uniaxial, single-domain nanoparticles have shown
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that, under certain circumstances, the distribution of interparticle interaction fields exhibits a
bimodal structure when the system is in a low moment configuration, due to the formation
of internally coupled clusters of nanoparticles which switch rigidly as a unit. When viewed
in combination with the ageing simulations presented above, this suggests that the ageing
of the FC state observed in some nanoparticulate assemblies may well be a noncollective,
superparamagnetic effect, in which interactions between the individual components must be
present, and must be distributed in a particular way, but are otherwise local in character.

Furthermore, memory of this ageing process is preserved in TRM relaxation isotherms
when the field is subsequently removed from the aged FC state. Figure 8 also shows the
configuration of the Preisach plane at the instant of field removal. The subsystems which
will contribute to the relaxation of the moment with time are those which lie in the region
0 � Hs � Ha and bounded by the bold lines. These subsystems are trapped in metastable
positive moment configurations and will suffer moment reversal as the thermal viscosity
boundary HT = (kT/µ) ln(t/τ0) propagates to the right with observation time t , as shown.
The aged subsystems in the area labelled ‘SP + aged’ are in the highest-moment configuration
compatible with thermal equilibrium at temperature T , mSP+aged = µ tanh[µ(Ha − Hs)/kT ],
and will experience the most significant moment reversal to the zero-field configuration
mSPzero = −µ tanh(µHs/kT ), in comparison with the blocked subsystems in the shaded
region labelled ‘Blocked +’, which are trapped in lower moment configurations mblocked =
µ tanh[µ(Ha− Hs)/kTB] < mSP+aged, and which will contribute progressively smaller moment
reversals with increasing Hd, and hence with increasing observation time t . Thus, the TRM
relaxation isotherm will exhibit a drop in the decay rate in the vicinity of t ≈ ta, when
plotted on a logarithmic timescale, and this crossover will become progressively sharper as
Ha → 0, and the spread in crossover times, defined by the diagonal boundary separating
the ‘SP + aged’ and ‘Blocked +’ regions, becomes narrower. Numerical simulations of TRM
relaxation isotherms were performed assuming k/µ = 0.3 Oe/K, T = 60 K (corresponding to
Hf = 20 Oe), Ha = 1 Oe, tc = 1 s, and a constant Preisach density p(Hd, Hs). The simulations
include the effects of thermal broadening. That is, the usual assumption that an individual
subsystem relaxes as a step-function on a logarithmic timescale is replaced by a more realistic
representation in which moment reversal is spread over a time interval � ln t ∼ 1, which is
equivalent to limiting the resolution of the subsystem excitation fields Hexc to an interval on the
order of the thermal fluctuation field �Hexc ∼ Hf . As expected, the model relaxation isotherms
are characterized by a smooth ‘bend’ at an observation time ln t ∼ ln ta, separating two regimes
where the moment decays approximately logarithmically with time. This translates into an
age-dependent ‘knee’ in the relaxation rate S ≡ −∂M/∂ ln t , as shown in figure 9(b), with
systematics which are highly reminiscent of those observed in some nanoparticulate assemblies
within the blocked phase, particularly at higher temperatures [1, 21]. The curvature of the knee
is determined primarily by thermal broadening, which tends to dominate any smoothing effects
related to the dispersion of crossover times mentioned earlier, particularly for fields Ha � Hf .
Thus the structure in the relaxation rate in figure 9(b) becomes more diffuse as the temperature
increases, and this too is a characteristic of the experimental data.

3. Summary

The relaxation dynamics of collections of interacting, thermally activated, two-level
subsystems are shown to be characterized by nonequilibrium ageing and memory effects which
are analogous to those observed in magnetic systems where randomness and frustration yield
a collectively frozen magnetic state with spin-glass-like correlations. In particular, collections
of two-level subsystems exhibit ‘memory steps’ in the temperature dependence of the field
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cooled moment, and memory in the time dependence of TRM relaxation isotherms, as well as
an age dependence of the magnetic response at a fixed temperature in a fixed field. However,
in spite of superficial similarities, there is one subtle, yet fundamental distinction, which is
particularly easy to appreciate when viewed from the perspective of the Preisach formalism,
between ageing and memory effects characteristic of superpositions of bistable elements and
those which are genuinely collective in origin. If cooling in a field (zero or nonzero) from the
high temperature equilibrium (superparamagnetic) phase to a temperature T in the irreversible
phase is followed by ageing at temperature T in a fixed field, and then by cooling to a lower
temperature without changing the field, then according to figure 8, memory of the ageing at
T is erased in bistable ensembles during cooling, as the diagonal boundaries propagate back
to the left and reblock the aged superparamagnetic subsystems. Thus a change in field is an
essential ingredient of the experimental protocol if memory of ageing at constant temperature
is to be imprinted permanently on a blocked superparamagnet. (These considerations do
not apply to the first two memory effects discussed in sections 2.1 and 2.2, where ageing
is always associated with a field change, and is imprinted through moment reversal.) By
contrast, in systems with collective spin glass correlations, this imprint is achieved by the
simple expedient of waiting, and reflects the essentially chaotic nature of the frozen state.
Of course, these differences do not disqualify any of the relaxation processes described here
as potential contributors to the nonequilibrium phenomena observed in spin glasses, and in
some nanoparticulate assemblies which are believed to exhibit collective behaviour, but they
do allow us to classify these phenomena into those which are necessarily collective versus
those which are not.
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